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Investigation is made of one of the self-similar regimes in the problem of a crystal growing from a pure melt 
with an isothermal surface. This regime is shown to exist only in the case of two-dimensional, cylindrical, or 
spherical geometry of  the crystal and also when a two-dimensional crystal grows on a surface isometric to the 
surface of revolution. Modeling of the spherical crystal growth by two-dimensional crystallization on the 

surface of revolution is discussed. 

The Stefan problem is termed a mathematical model of heat transfer processes (diffusion) accompanied by phase 
changes in a medium with an unknown position of the phase boundary. The problems of heat flux in a superheated melt 

(Czochralski, Bridgman, Chalmers crystal growth, ice crystallization, cast solidification), in a supercooled melt (dendritic 
growth), on diffusion (crystal growth from a solution) fall in this category. One of the trends in the Stefan problem investigation 
is finding analytical solutions. The known exact solutions corresponding to cylindrical, spherical, paraboloidal, and elliptical 
forms of growth [3] possess certain symmetries. Therefore it is natural to study solutions with a sufficiently high degree of 

symmetry (the presence of the latter simplifies the problem) when searching for other geometries of growth. 
The present work deals with the case when a family of isotherms in the process of crystal growth (henceforth just this 

variant is under consideration) remains permanent, with a temperature on each surface varying with time. In other words, there 
exists a time-independent (n -- 1)-parametric group of transforms of a n-dimensional manifold M, in which a crystal is 

growing, relative to which both the heat conduction equation and the boundary conditions on a phase boundary are invariant. 
Here temperature distribution is a function of time and some scalar function of a space variable and the problem is reduced 
to the one-dimensional problem with a movable boundary which essentially simplifies the initial formulation. 

Consider a process of crystal growth from a melt with some time interval r E  (to, rl). Assume that at  any ~-E (r0, rl) 
a crystal surface 17(0 is a smooth (n -- 1)-dimensional submanifold of an n-dimensional manifold M which subdivides M into 
two regions, namely, M l occupied with a solid phase and M 2 with a liquid phase. The temperature distribution T = T i, x E 
M 1 satisfies the heat conduction equation 

ci (T) OT/Ox div (• (T) vT) 
(l) 

and the heat balance condition for F(r) 

( ~ I v T 1  - -  ~ z v T ~ _ )  n - -  Lv. (2) 

A crystal surface is isothermal 

TIr(,~ ~ To =- const. (3) 

Here n is the unit normal to r(o, v is the growth rate in the direction of the normal. 

In the domain M = U17(r) c_ M the function 3,(x) is naturally determined as a moment of time 3' at which the crystal 

surface 17(3') goes through the point x. Then r(r) is prescribed by the equation 3'(x) = r. We investigate the case when a family 
of isotherms remains permanent in a solidification process, however a temperature on each surface varies with time. From (3) 

it follows that the family of isotherms in the region M coincides with the family of surfaces of the level of the function 3'(x) 
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and, consequently, in 1~I T is a function of  (r, 3"). Now we try to elucidate at what conditions T may be represented in the 

form: 

T (% x) = t (T, y(x)). (4) 

Substituting VTi.n = (ah/a3")(v3".n) = (aq/a3") l v3" I ,  v = I vv  I -1 into (2) we obtain on F(r)  

i V , ~ [ _  2 = 7..12 _._ g l  Otl ~'~2 Ot,J 
L 8? L O? 

The right-hand side of  this equality is a function of  (r,  3'), while the l.h.s, is a function of  x. Therefore,  we have 

Ivv (x)l. = t (,e (x)) (5) 

on I'(r) for some function of  f and r E  ( r  o, rl) .  But at r running through the segment (to, r l)  the moving surface P(r) sweeps 

over the entire region M. Thus, (5) is valid at all x E M. 

Substituting (4) and (5) into (1) we arrive at 

A v  = ~l c ( t )  ot __ 
0--7- l 

8 Ot 
" -g-, _l " 

Here the r.h.s, is again the function of  (r,  3') and, consequently, for some function g and x E IVl. 

Av = g (v). (6) 

Now we are to find a possible form of  the functions 3'(x) satisfying the conditions (5), (6) and not equal to the constant. 

For this, we consider the function 

v d~ (7) 
,o (v)  =: i 

< f (~) 

It is easy to see that Vo(3,(x) ) = n(x) is the field of  unit normals to r(3'(x)) and, consequently, p(3'(x)) is the distance from the 

point x to I" o = I'(ro) and all the points of  the surface r(3,) are at the same distance 0(3') from r o. 

From (6) and (7) we find 

a o  -- g (v)/7 (v) - -  df/d~,  = h (p). (8)  

Introduce into l~l the structure of  the direct product I' o x {p}: make each point x E IVl juxtapose the pair (u, O), where u is 

the nearest point to x on I" o, while p, determined by formula (7) is, up to a sign, the distance from x to F o. For arbitrary 

parametrization of  I" o and the parametrizations induced by it, of  surfaces of  the level 0 

0 (9) 
h (p) = div n = [In 1,/det (gej (u, p) gJ'~ (u, 0))], 

09 

where gij is the first quadratic form of  the surface o = const. Designate 

9 

H (p) = exp (.t' h (~) d~). 
0 

Integrating (9) yields the next result. For a self-similar solution of the form (4) of  the Stefan problem (1)-(3) to exist, 

it is necessary that coordinates (u i, O) exist on M, in which the first quadratic form is 
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(g~, 031 ' det[gu(u,  O)#k(u, 0)] = H2(9). 

In this case, the system of equations for the temperature distribution t(r, P) and unknown boundary P = PO-), with P being the 

distance from x to ro, takes the following form: 

c (t) H(p) Ot 0 I Ot 1 (10) 0---;- - -  • (0/4 (0) J '  

at~ 

09 
--• Ot----L-2 --L 

" Op  I (z ,P(~) )  

dP 
dq7 ' 

(li) 

t('~, P(~)) ~ To. (12) 

The obtained system may be formally considered as the one-dimensional Stefan problem for a medium with a 

coordinate-dependent density H(p) but in the absence of convection. In our case a surface area p = const (if this area is finite) 
serves as a density. 

To illustrate solving the system (10)-(12) for an arbitrary function H(p), we consider the inverse Stefan problem when 
a law of crystallization front displacement p = P(r) is given and we are to determine the temperature distribution in solid and 

liquid phases. In the case of constant (probably different) phase thermal diffusivities ~i(T)/ci(T) = a i = const, the temperature 
distribution is described by the following equation 

r ~ dh [ 
f c (a)da = ~ 1 [A (P, 
., ~ ~ h+l d.rh To == ~2i 

P(z))(q(,), + ( i - l )  dPd~ ) ' 
(13) 

where 

[~ (9, P)-----I'H-I(~)I H (O [~-I (;, P)d~d~; 

P 

f0 (P, P) = H (P).!' H -~ (~) d~, 
P 

and a choice of an arbitrary function q0") may satisfy additional boundary conditions, for instance, the limitedness condition 
of T at p --~ 0o. Substituting H = 1 into (13), we obtain the known solution of the inverse one-dimensional Stefan problem 
[2]. 

The boundary conditions (11), (12) may be complicated by considering the surface tension and kinetic supercooling 
at the crystallization front, for instance, in the following manner [2, 3] 

Otl Ot~ ( .) 
nl-- --• .= L 1 - - d l  ..h(P) d i p  (14) 

Op 09 (~,p~)) n d~ ' 

tO;, P ( ' r ) ) = T 0 - - F  h(P) AT (d__PP) (15) 
n 

where AT(v) is the kinetic supercooling as a function of the growth rate; dP/dr is the growth rate; h(P)/n is the mean surface 
curvature of the crystal. 

Now consider in detail two important cases, namely, the crystal growth in the Euclidean space and on the 
two~limensionai surface in R 3. 

1. M = R n. In the vicinity of an arbitrary point u E F o introduce coordinates (u i) on I' o so that in u the main quadratic forms 

were gij = 6ij, hij = kifiij (ki are the main curvatures of the surface r o in u). In these coordinates 
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0x 0x 0 (u + pn (u)) 0 (u -? 9n (u)) g,j (u, p) . . . . .  
Ou t Ou i (,u ~ Ou i 

k 2 
-- gij + 29hij + hi hhj9 = ( l  + pk,) 2 6~j, 

n - 1  n - -1  

det g,~ (u, 9) : :  [][ (1 -k oki) 2, H (O) = 1"] (1 + Ok,). 
i ~ 1  i = I  

Since the set (ki) is restored unambiguously from the last equation, then the main curvatures of lq are constants. It is easy to 
show that s is either a plane, a sphere, or a_ cylinder with the m-dimensional (I _< m _< n -  1) sphere in the base. 

Thus p(x), within the entire region M swept by a crystal surface during motion, is the distance, with an accuracy to 
the additive constant, between the point x and the prescribed m-dimensional (0 _< m _< n) affine surface R n. The crystal 
surface will be either a plane, straight circular cylinder, or a sphere and in (10) 

#I (p) = o'~. 

For instance, for the growth of a flat crystal in a three-dimensional space H = 1, for a cylindrical crystal H = p, fbr a 

spherical crystal H = p2. 
2. M is the two-dimerk~ional surface in R n. Introduce a natural parameter u on F 0. Then we may write in the 

coordinates (u, p) 

gij(u, 9)-= (H2~ 9) 0').1 (16) 

Such a surface is isothermal to a surface of revolution specified by the equation 

r : : roH(9) ,  9 =  i q/1 @(dr/dz) 2dz. (17) 
z; 

Here O is the distance along the generatrix. 
Thus, a self-similar regime of the form (4) is possible only on a surface satisfying the condition (16) (in particular, 

on an arbitrary surface of revolution). 
As an example, consider modeling of the growth of a spherical crystal in R 3 by the crystal growth on a two-dimensional 

surface. Substituting H(p) = ,02 into (17), we find the required form of the surface: 

z/~',. ~ arcsin ] / ' r~  + ] / r /a  - -  r2/a ~, 0 ~ r ~ a (18) 

(a is an arbitrary constant). Therefore, axisymmetric crystallization of a sufficiently viscous (to avoid runoff) thin film on a 

surface of revolution prescribed by Eq. (18), without beat transfer with the surrounding medium, is the model of spherical 

crystal growth in the limited region (O -< 2a). In this case, the temperature and the heat flux across the crystallization front 
may be given both by Eqs. (11), (12) and (14), (15). The boundary conditions in the first case on the circumference r = a 

correspond in the second case to the boundary conditions at the boundary of a spherical region p = 2a. Thus, the 
three-dimensional Stefan problem is modeled by the two-dimensional one that implies the possibility of direct observation of 
the crystallization process. Analogously, the spherical crystal growth from a binary alloy, when heat conduction and diffusion 
processes proceed simultaneously, is modeled as axisymmetric crystallization from a binary alloy on the surface given by (18). 

Such modeling exists also in other physical processes if interaction in the two-dimensional model occurs only along the surface. 
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NOTATION 

T, t, temperature; F(r), crystal surface; n, normal to F(r); v, growth rate; M, n-dimensional manifold; x, point on M; 
T, time; rl, thermal conductivity; ci, heat capacity; L, latent heat of melting; To, melting point; F, surface tension coefficient. 
Subscripts i = 1, 2 stand for solid and liquid phases,respectively. 
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